REFINING OF SILICON

BIA-NFR Hydromet Seminar, Lillestrøm, 7th of March 2017

Anne Gry Messenlien, Elkem Technology
The second most common element in the crust of the earth (27%)
Elkem in brief

- Founded in 1904 by Sam Eyde
- Owned by China National Bluestar since 2011
- 110 years of history as a technology provider

3800 employees
(1530 in Norway*)

24 plants worldwide
Headquarter in Norway

14,5 BNOK
Revenue in 2015

370 R&D people
Global R&D centres in Norway and Lyon

*the number includes 280 employees in Elkem Solar
Focus on continuous R&D

Close to 370 people working with R&D in Elkem.

CORE COMPETENCIES ARE:
• High temperature processes and equipment
• Particle technology
• Chemical analysis and characterization

Elkem’s innovative and technology-intensive environment has resulted in both radical and incremental improvements in products and in production processes.
Our products are vital for modern societies

QUARTS
- SILICON AND MICRO SILICA

COAL
- SILICONES

BIOCARBON
- FOUNDRY PRODUCTS

POWER
- CARBON PRODUCTS

Low cost sustainable input factors
High temperature / chemical production processes
Examples of high value applications and markets

- Windmills
- Automotive
- Electronics
- Solar
- Infrastructure
- Cooking utensils
- Airbags
- Release coating
- Solar
- Airbags
Elkem AS – our four business areas

Silicon Materials
Global producer and provider of silicon, microsilica and specialty materials

Silicones
One of the foremost fully integrated silicones manufacturers in the world

Foundry Products
Leading producer of specialty-alloys for the foundry and steel industries

Carbon
Leading producer of electrode paste and other carbon products
The journey from Quartz to High Purity Silicon
Selecting Raw Materials
The carbothermic production process

Raw materials:
- Quarts
- Coal
- Charcoal
- Coke
- Wood chips

Overall reaction:
\[\text{SiO}_2 + 2 \text{C} = \text{Si} + 2 \text{CO} \]
The carbothermic production process

Raw materials:
- Quartz
- Coal
- Charcoal
- Coke
- Wood chips

Overall reaction:
\[
\text{SiO}_2 + 2 \text{C} = \text{Si} + 2 \text{CO}
\]
The carbothermic production process

Raw materials:
- Quartz
- Coal
- Charcoal
- Coke
- Wood chips

Overall reaction:
\[\text{SiO}_2 + 2 \text{C} = \text{Si} + 2 \text{CO} \]
Phase diagram Ca-Si

From A.Schei et al, Production of High Silicon Alloys

Details of the phase diagram Ca-Si (Schürmann et al. 1975)
Casting – making a leaching alloy

<table>
<thead>
<tr>
<th>Element</th>
<th>[g/mol]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>28.1</td>
</tr>
<tr>
<td>Ca</td>
<td>40.1</td>
</tr>
<tr>
<td>Fe</td>
<td>55.8</td>
</tr>
</tbody>
</table>
Disintegration of Silicon alloy

Examples of elements in the Intermetallic phase

Hydrochloric acid (HCl)
(feedstock disintegrates)

Hydrofluoric acid (HF)
(“polishing” the surface of the Si-grains)

Impurities on the surface, ex. Fe$_2$Si

Product
The Silgrain ® - process

- Hydrometallurgical process developed in the 1960s
- Production facilities in Bremanger
Silgrain process - Disintegration

H₂ → FeSi from furnace 5

HR → UR → VT → ST → Beltfilter

Cl₂
Silgrain process – Classification

From BF 2 → +2 mm → Silgrain

From BF 1 → +2 mm → Milling

Dryer 2 → Dryer 5

To air → To - 45 m.

control control control control

Milling

Dryer 5

To air

control control control control

Silgrain

control control control control

control control control control

control control control control

To - 45 m.
Silgrain process HQ – Removing more impurities
Chemical analysis - Silgrain® products

Silicon 97

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Si wt%</th>
<th>Fe wt%</th>
<th>Al wt%</th>
<th>Ca wt%</th>
<th>Ti ppmw</th>
<th>P ppmw</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max</td>
<td></td>
<td>2.0</td>
<td>0.30</td>
<td>0.05</td>
<td>1000</td>
<td>50</td>
</tr>
<tr>
<td>Min</td>
<td>97</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typical</td>
<td>97.5</td>
<td>1.7</td>
<td>0.20</td>
<td>0.02</td>
<td>700</td>
<td>35</td>
</tr>
</tbody>
</table>

Silgrain® CG

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Si wt%</th>
<th>Fe wt%</th>
<th>Al wt%</th>
<th>Ca wt%</th>
<th>Ti wt%</th>
<th>P ppmw</th>
<th>B ppmw</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max</td>
<td>0.20</td>
<td>0.25</td>
<td>0.050</td>
<td>0.020</td>
<td>35</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>0.08</td>
<td>0.13</td>
<td>0.013</td>
<td>0.008</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typical</td>
<td>99.6</td>
<td>0.11</td>
<td>0.022</td>
<td>0.011</td>
<td>25</td>
<td>30</td>
<td>0.2-0.8 mm</td>
<td></td>
</tr>
</tbody>
</table>

Silgrain® HQ

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Si wt%</th>
<th>Fe wt%</th>
<th>Al wt%</th>
<th>Ca wt%</th>
<th>Ti wt%</th>
<th>P ppmw</th>
<th>B ppmw</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max</td>
<td>0.05</td>
<td>0.12</td>
<td>0.02</td>
<td>0.005</td>
<td>35</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>0.02</td>
<td>0.07</td>
<td>0.005</td>
<td>0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typical</td>
<td>99.8</td>
<td>0.04</td>
<td>0.013</td>
<td>0.001</td>
<td>25</td>
<td>30</td>
<td>0.2-0.8 mm</td>
<td></td>
</tr>
</tbody>
</table>
Refining strategy High Purity Silicon: Combining Pyrometallurgy and Hydrometallurgy

- No need for high purity raw materials
- Lower energy consumption
- Larger furnace size
- Higher furnace yield
- Lower total yield
- Process complexity
- More ready made sizing
- High and consistent purity in product!
Elkem Solar - Kristiansand

- Investment: 4,2 BNOK
- Capacity: 7000 ton/year
- Employees: 200 people
Elkem Solar® production process

- **Silicon**: metallurgical silicon is produced from quartz in an electric arc furnace, at temperatures above 2,000 degrees C.

- **Slag treatment**: a purification process, in which the molten silicon is mixed with slag, in order to extract further impurities, especially boron.

- **Leaching**: a “wet” chemical refining process that removes phosphorous and metallic impurities from silicon in solid form.

- **Solidification**: the silicon is melted and directionally solidified through which impurities are segregated and thereafter removed in the subsequent post-treatment process.

- **Post treatment**: cutting and surface washing.
Chemical Analysis

<table>
<thead>
<tr>
<th>Element</th>
<th>Unit</th>
<th>Max</th>
<th>Min</th>
<th>Typical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>ppmw</td>
<td>< 2.0</td>
<td>< 0.8</td>
<td>Matrix</td>
</tr>
<tr>
<td>Fe</td>
<td>ppmw</td>
<td>< 0.4</td>
<td>< 0.15</td>
<td></td>
</tr>
<tr>
<td>Al</td>
<td>ppmw</td>
<td>< 10</td>
<td>< 3.0</td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td>ppmw</td>
<td>< 0.4</td>
<td>< 0.08</td>
<td></td>
</tr>
<tr>
<td>Ti</td>
<td>ppmw</td>
<td>0.68</td>
<td>0.60</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>ppmw</td>
<td>0.26</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>ppmw</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Elkem Solar in the value chain

ELKEM SOLAR SILICON (ESS)
- Silicon
- Slag treatment
- Leaching
- Solidification
- Post treatment

ELKEM SOLAR FISKAA

ELKEM SOLAR HERØYA
- Ingot(Blokk) solidification

SILICON
- Fiskaa

BLOCK
- Herøya

WAFER
- REC Solar Singapore

CELL
- REC Solar Singapore

MODULE
- REC Solar Singapore
Silicon - a fantastic element......

...and thank you for your attention!
ADVANCED MATERIALS
SHAPING THE FUTURE