

Precipitation of iron oxides in zinc and nickel production

HYDROMET seminar, Lillestrøm 07.03.17 Ina Beate Jenssen

HYDROMET march 2017, ina.b.jenssen@ntnu.no

Main objectives

- Better understanding of iron precipitation
- Remove impurities Boliden Odda
- Better filterability Glencore Nikkelverk

,

Zinc production

Precipitation of iron oxides

- Complex
- Many different iron oxides
 - Fe(II) and Fe(III)
 - Crystalline, amorphous, nanocrystalline
- Typical iron oxides in zinc and nickel production?

opecies	Torrida
Magnetite	Fe_3O_4
Hematite	α -Fe ₂ O ₃
Maghemite	γ -Fe ₂ O ₃
Goethite	α-FeOOH
Akageneite	β-FeOOH
Lepidocrocite	ү-ГеООН
Bernalite	Fe(OH) ₃
Wustite	FeO
Feroxyhyte	δ-FeOOH
Ferrihydrite	

Formula

Species

 $Fe_2(SO_4)_3 + 3ZnO + 3H_2O = 2Fe(OH)_3 + 3ZnSO_4$ 2 $FeCl_2 + Cl_2(g) + 3H_2O + 3NiCO_3(s) = 2Fe(OH)_3(s) + 3NiCl_2 + 3CO_2(g)$

Fluoride adsorption

- Results from SINTEF even distribution of fluoride on the precipitate
 - Adsorption?
- Literature research
 - Iron hydroxides as adsorbent for fluoride in water treatment*
- Mechanism
 - $\quad \text{Adsorption (chemisorption)} \quad \equiv \!\! FeOH^{-1/2} + F^{-1}(aq) + H^{+}(aq) \rightleftarrows FeF^{-1/2} + H_2O(l)$
 - Ligand exchange**
- $\equiv \operatorname{Fe_2OH}^0 + \operatorname{F}^{-1}(\operatorname{aq}) + \operatorname{H}^+(\operatorname{aq}) \rightleftharpoons \operatorname{Fe_2F}^0 + \operatorname{H_2O}(1)$
- Important factors

 - Surface area
 - Type of iron oxide
 - Competing anions

*Mohapatra, M., Anand, S., Mishra, B. K., Giles, D. E., & Singh, P. (2009). Review of fluoride removal from drinking water. *Journal of Environmental Management*, 91(1), 67-77.
**Ding, X. (2012). Identity of Fluoride and Phosphate-Binding Sites at FeOOH Surfaces.

Fluoride adsorption

- Two different synthetic iron oxides
 - Goethite
 - Crystalline
 - Low surface area (35 m²/g)
 - Ferrihydrite
 - Amorphous/nanocrystalline
 - High surface area (272 m²/g)

Characterisation of industrial samples – Boliden

- Samples from the neutral leaching
 - NLT2
 - NLT5
 - Settler

Characterisation of industrial samples – Boliden

• Fluoride desorption

15

Characterisation of industrial samples – Boliden

Fluoride desorption – surface area taken into account

Sample	BET surface area (m²/g)
NLT2	27
NLT5	145
Settler	137

Iron precipitation in nickel production

- Filterability
- Particle size
- Important factors
 - Temperature
 - Supersaturation
 - Oxidation from Fe(II) to Fe(III)

