

## The "toolbox" of a Hydrometallurgist...



## Processes available to purify metal-containing aqueous solutions:

- Chemical precipitation (oxides, hydroxides, carbonates, sulphides etc.)
- Crystallisation (metal salts)
- Electrochemical precipitation (cementation, H2-reduction)
- Electrodeposition
- Liquid-liquid Extraction (organic solvents)
- Ion Exchange (resins)
- Ultra Filtration/RO
- And others...











Fig. 1.1 A schematic representation of solvent extraction (fiquid-liquid distribution). A solute A is distributed between the upper layer, for example an organic solvent, and the lower lawer, an anneous bhase.

NIKKELVERK A GLENCORE COMPANY

## Solvent extraction in Hydrometallurgy



### Requirements for the organic phase

The extractant should:

- · have very low solubility in the aqueous phase
- have good chemical stability and be resistant to oxidation
- not form stable emulsions with the aqueous phase
- have high solubility in aliphatic and aromatic diluents
- be non-flammable (high flash point) and non-volatile (low evaporative losses)
- have low toxicity
- have reasonable cost (and be preferably available from more than one supplier)

... in addition to the process requirements such as having:

- the required metal selectivity
- · high loading capacity
- fast loading and stripping kinetics

## Solvent extraction in Hydrometallurgy



#### Requirements for the organic phase

#### The diluent should:

- provide the solvency for the extractant, the modifier, and the extracted metal species
- have very low solubility in the aqueous phase
- have good chemical stability and be resistant to oxidation
- not form stable emulsions with the aqueous phase
- · have high flash point and low volatility
- low viscosity and low specific gravity
- low toxicity (and smell)
- non-corrosive
- low cost and readily available (at the plant location)

#### The organic modifier should also:

improve the phase-separation and/or the solubility of the metal-extractant complex

NIKKELVERK

## Solvent extraction in Hydrometallurgy



### Requirements for the organic phase

A modifier can improve the solubility of the metal-extractant complex and prevent third-phase formation



# Solvent extraction in Hydrometallurgy Classes of organic ligands



Extractants are normally divided into three different classes of ligands

### **Cationic extractants:**

Type of exchange required: Simple cations or cationic complexes of metal ions (net charge > 0)

Examples: Cu(2+), Fe(3+), UO2(2+) etc.

#### **Anionic extractants:**

Type of exchange required: Anionic complexes of metal ions (net charge < 0) Examples: CuCl3(2-), PdCl4(2-), FeCl4(-), PtCl6(2-), ReO4(-), WxOy(z-) etc.

#### **Solvating extractants:**

Type of exchange required: Neutral complexes of metal ions (net charge = 0) Examples: HFeCl4, H2PtCl6, UO2SO4, H3AsO4 etc.

NIKKELVERK

# Solvent extraction in Hydrometallurgy Cation exchange



Solvent Extraction of Metals from Aqueous Solutions

Cation Exchange -- reaction and reagents

In its simplest form ... 
$$Me^{n+} + n\overline{HR} \Leftrightarrow \overline{MeR}_n + nH^+$$

With additional coordination 
$$Me^{n+} + (n+s)\overline{HR} \Leftrightarrow \overline{MeR_n \cdot sHR} + nH^+$$

- > The extractant is an organic acid HR (reagent capable of exchanging H\*)
- > equilibrium reaction, pH dependent
- > metal extraction usually requires some form of pH control
- $\succ$  metal stripping from the organic requires acid (H+)



# Solvent extraction in Hydrometallurgy Anion exchange



### Solvent Extraction of Metals from Aqueous Solutions

Anion Exchange (ion-pair formation) - reaction and reagents

Acid extraction:  $\overline{R_3N} + HX \Leftrightarrow \overline{R_3NH^+ \cdot X^-}$ 

Metal extraction:  $(m-n)\overline{R_3NH^+\cdot X^-} + MeX_m^{(m-n)-} \Leftrightarrow \overline{(R_3NH^+)_{m-n}\cdot MeX_m^{(m-n)-}} + (m-n)X^-$ 

Metal complexation (anionic complexes formation):

$$Me^{n+} + mX^{-} \Leftrightarrow MeX_{m}^{(m-n)-}$$

where HX is an inorganic acid, such as HCl

- The extractant is an organic base (capable of extracting acid to form an amine salt and then of exchanging anionic species)
- > equilibrium reaction
- > the reaction is acid (HX) and X- ion dependent (all three reactions interdependent)
- > Example:

 $R_3N_{org} + HCI \Leftrightarrow R_3NH^+Cl^-_{org} \\ \hspace{0.5cm} 2R_3NH^+Cl^-_{org} + CoCl_4^{\ 2-} \Leftrightarrow (R_3NH^+)_2CoCl_4^{\ 2-}_{org} + 2Cl^-_{org} \\ \hspace{0.5cm} 2R_3NH^+Cl^-_{org} + CoCl_4^{\ 2-}_{org} + 2Cl^-_{org} \\ \hspace{0.5cm} 2R_3NH^+Cl^-_{org} + 2Cl^-_{org} + 2Cl^-_{org} + 2Cl^-_{org} + 2Cl^-_{org} + 2Cl^-_{org} \\ \hspace{0.5cm} 2R_3NH^+Cl^-_{org} + 2Cl^-_{org} + 2Cl^-_$ 

NIKKELVERK

# Solvent extraction in Hydrometallurgy Advantages and disadvantages



#### Metal Solvent Extraction and Ion-Exchange

#### Advantages

- (i) Very pure and concentrated metal solutions can be produced by both SX and IX
- (ii) The organic phase, or the resin, is regenerated and repeatedly used
- (iii) Ability to recover trace amounts of metals (IX) in concentrated form
- (iv) Generally operate at, or close to, ambient temperatures
- (v) Continuous processes, can be readily automated

#### Limitations

- i) SX: the organic solvents (diluents, modifiers, extractants) are flammable liquids
- ii) SX: some solvents are toxic; all have certain (although very low) solibility in aqueous solutions
- iii) as organic compounds, most extractants, diluents, and resins, are prone to oxidation
- iv) the aqueous solution must be free of solids
- /) limits for the feed concentration of target metal(s), particularly for IX (low intensity mass-transfer)

## Solvent extraction in Hydrometallurgy Cation-exchange extractants

### Solvent Extraction of Metals from Aqueous Solutions

### Cation-exchange extractants

S: 
$$\begin{array}{c} R \\ CH_3 \\ C_3H_{11} \cdot C \cdot COOH \\ \dot{C}_2H_5 \end{array} \begin{array}{c} R \\ CH - CH \\ \dot{C}_3H_5 \end{array} \begin{array}{c} CH_3 \\ CH_2 \end{array} \begin{array}{c} CH_3 \\ CH_3 \\ CH_4 \\ CH_3 \\ CH_4 \end{array} \begin{array}{c} CH_3 \\ CH_3 \\ CH_4 \\ CH_3 \\ CH_4 \\ CH_3 \\ CH_4 \\ CH_3 \\ CH_4 \\ CH_4 \\ CH_5 \\ CH_4 \\ CH_5 \\ CH_5 \\ CH_5 \\ CH_6 \\ CH_5 \\ CH_6 \\ CH_6 \\ CH_7 \\ CH_8 \\ CH$$

Organophosphorus acids

Chelating extractants – such as hydroxy oximes (LIX®, Acorga®)  $$_{\rm OH}$$  N-OH

$$\bigcap_{CH} \begin{tabular}{c} N-OH \\ \hline & C \\ \hline & C \\ \hline & G \\ = H \ (aldoxime): C_0H_0 \ or \ CH_3 \ (ketoxim)$$

NIKKELVERK

# Solvent extraction in Hydrometallurgy Anion-exchange extractants



#### Solvent Extraction of Metals from Aqueous Solutions

Anion-exchange extractants -- organic amines

- > Primary amines R NH<sub>2</sub>
- Secondary amines  $\begin{array}{c} R \\ R \end{array}$  NH (e.g., R is CH<sub>3</sub>(CH<sub>2</sub>)<sub>12</sub> )
- $\frac{R}{R} \frac{\backslash}{/}$  N (e.g., R is  $CH_3(CH_2)_7$  or  $CH_3$   $CH(CH_3)$ -( $CH_2$ )<sub>5</sub> -) Tertiary amines Tri-iso-octyl amine (Alamine® 308); tri-n-octyl / decyl amine (Alamine® 336)

# Solvent extraction in Hydrometallurgy Solvating extractants



### **Solvent Extraction of Metals from Aqueous Solutions**

#### Solvating extractants

- > Organophosphoric esters (RO)<sub>3</sub> P=O (e.g., <u>TBP</u> (C<sub>4</sub>H<sub>9</sub>O)<sub>3</sub>P=O, tri-butyl phosphate)
- > Phosphine oxides  $R_3$  P=O (e.g.,  $\underline{TOPO}$  ( $C_8H_{17}$ )<sub>3</sub>P=O, tri-octyl phosphine oxide)
- Phosphine sulfides R<sub>3</sub> P=S (e.g., <u>Cvanex® 471</u> (CH<sub>3</sub>- CH(CH<sub>3</sub>)-CH<sub>2</sub>)<sub>3</sub>P=S, tri iso-butyl phosphine sulfide)
- ➤ Ketones R-CO-R' (e.g., MIBK CH<sub>3</sub>-CO-CH<sub>2</sub>-CH(CH<sub>3</sub>)-CH<sub>3</sub>, methyl iso-butyl ketone)
- Ethers R-O-R' (e.g., <u>DBC</u> CH<sub>3</sub>-(CH<sub>2</sub>)<sub>3</sub>-O-(CH<sub>2</sub>)<sub>2</sub>-O-(CH<sub>2</sub>)<sub>2</sub>-O-(CH<sub>2</sub>)<sub>3</sub>-CH<sub>3</sub>, dibutyl carbitol

NIKKELVERK

## Solvent extraction in Hydrometallurgy Presentation of experimental data



#### **Equilibrium constant K: KMe**

Example rx. cation exchanger: Me(n+) + nHR(org) = MeRn(org) + nH(+)

KMe = ( [MeRn(org)]  $\times$  [H(+)]^n ) / ( [M2(n+)]  $\times$  [HR(org)]^n ), assume act.coeffs ~ 1

**Distribution coefficient D**: DMe = [Me(org)] / [Me(aq)]

**%-extracted**: Percent of initial metal content in aq.feed solution transferred into the organic phase

(Assume data produced in experiments with O/A-ratio = 1/1 & single metal salt solutions with low concentrations of the metal of interest.)

Selectivity coefficient S: example S(Co-Ni) = DCo / DNi















## Solvent extraction in Hydrometallurgy Example 6: continued... Development of separation coefficient S(Co-Ni) Co:Ni RBMR, South Africa 10 D2EHPA 300 Nippon Mining, Japan PC-88A Jinguan Nickel, China P507 300 CYANEX 272 40% of world Co 7000 NIKKELVERK

# Solvent extraction in Hydrometallurgy Description of the complete SX-process



### **Extraction, Scrubbing and Stripping**

#### Extraction

- Unhindered extraction of one or more metals (extractant available for all)
- Metal-metal displacements i.e., a more strongly extracted metal can displace a more weakly extracted metal(s) – leading to an improved overall selectivity
- Presence of a 'buffer' metal with medium extractability can enhance the separation of a metal pair (M1 > M(b) > M2 – the extraction of M(b) will suppress the extraction of the least extractable M2) – e.g., Mg plays this role for enhancing Co/Ni selectivity with Cyanex® 272

#### Scrubbing

- Metal-loaded organic phase is contacted with an aqueous solution of a preferentially extractable metal so that it will displace less extractable metals from the loaded organic e.g., contacting Co/Ni loaded organic with Co solution to displace Ni (e.g., with Cyanex® 272)
- Washing vs scrubbing

#### Stripping

 Metal-loaded organic phase is contacted with strip aqueous solution to transfer the extracted metals into that aqueous solution

Regeneration: Remove minors accumulating, regenerate extractant molecule

# Solvent extraction in Hydrometallurgy Equilibrium isotherms, McCabe-Thiele

### Metal Isotherms, Operating Line and McCabe/Thiele diagrams

How many stages are needed to decrease the metal concentration in the aqueous from



The extraction (or stripping) **isotherm** represents in graphical format (a numerical equation can be "fitted") the changes in the metal distribution coefficient over a wide range of metal concentrations in the aqueous and the organic phases, for constant other conditions (e.g., temperature, pH, total extractant (&modifier), counter-ion, etc., concentrations).

The **operating line** reflects the mass-balance for the extraction circuit (a straight line with a slope equal to the A/O ratio:  $V_{ad}/V_{ora}$ ):

$$\overline{C}_1 = \overline{C}_F + \frac{V}{\overline{V}}(C_F - C_n)$$







## Solvent extraction in Hydrometallurgy Equipment for SX-processes in HM



### **Solvent Extraction Contacting Equipment**

- · All current Ni/Co SX operations use mixer-settlers of the same types as in copper SX
- <u>Advantages</u>: relatively simple to operate and recover from upset conditions; easier for crud removal; able to handle large (e.g., 1,000 m³/h and higher) aqueous feed flows (more than one mixer per M/S); suitable for systems requiring longer residence time; easier process control; "easier to comprehend"
- <u>Limitations</u>: one stage per M/S; capital intensive; require large footprint and extensive piping; combined pumping and mixing functions of the mixer impeller, often leading to overmixing; relatively difficult phase-continuity control; internal phase recycle may be required to maintain O/A~1 in the mixer; difficult to seal (when needed)
- High-rate units are often used to reduce footprint and organic inventory, and improve maintenability
- · Three prominent designs -- from Technip (Krebs), Bateman and Outotec
- Over the last ~10 years, Bateman Solvent Extraction (Israel) has been the leader in developing and implementing pulsed columns technology for large scale hydrometallurgical applications (Uranium SX at Olympic Dam, Goro Nickel and others).





## Solvent extraction in Hydrometallurgy Equipment: More on Bateman pulse column

## Contacting Equipment – Bateman Pulsed Columns

- Energy for mixing provided by compressed air via an external leg; usually, constant frequency, variable amplitude
- Maintaining dispersed phase hold-up is a key parameter to ensure residence time requirements
- Organic/liquid interface controlled in upper (for aqueous-continuous) or lower (for organiccontinuous) decanter





NIKKELVERK

## Solvent extraction in Hydrometallurgy Equipment: More on Bateman pulse column

Contacting Equipment – Bateman Pulsed Columns for Goro Nickel





# Solvent extraction in Hydrometallurgy SX in Ni-Co industry



### Solvent Extraction for Ni/Co Purification

There are three important nickel solution media:

Chloride from Cl<sub>2</sub> and/or HCl leaching of Ni matte or intermediates

 Kristiansand, Le Havre, Niihama, Hoboken Refineries +Norilsk Monchegorsk (Russia) and VALE Goro (New Caledonia)

Ammoniacal, NH<sub>3</sub>-(NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>, from leaching of roast reduced laterites

Yabulu, Tocantins, Punta Gorda, Cawse (Ni/Co ppte)

**Sulphate** from oxidative or H<sub>2</sub>SO<sub>4</sub> leaching of sulphide concentrates, mattes, precipitates or laterite ores.

Harjavalta, Rustenberg, Bulong, Minara (Murrin-Murrin)
+VALE Long Harbour (Canada), Goro and Sherritt Ambatovy (Madagaskar)



























# Solvent extraction in Hydrometallurgy Application in some key industries



Solvent extraction in the mining industry is a mature technology

| Metal | Global market primary metal | % using SX |
|-------|-----------------------------|------------|
| Cu    | 20 mill T/a                 | 20%        |
| Co    | 100 000 T/a                 | 50%        |
| U     | 50 000 T/a                  | 80%        |

